首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347446篇
  免费   36402篇
  国内免费   19183篇
电工技术   13110篇
技术理论   4篇
综合类   20775篇
化学工业   80241篇
金属工艺   51884篇
机械仪表   17381篇
建筑科学   17882篇
矿业工程   9729篇
能源动力   10355篇
轻工业   28327篇
水利工程   4679篇
石油天然气   10251篇
武器工业   3014篇
无线电   27029篇
一般工业技术   55433篇
冶金工业   23659篇
原子能技术   3731篇
自动化技术   25547篇
  2024年   751篇
  2023年   6321篇
  2022年   9546篇
  2021年   14100篇
  2020年   12216篇
  2019年   10621篇
  2018年   10690篇
  2017年   13135篇
  2016年   14775篇
  2015年   15928篇
  2014年   20781篇
  2013年   22254篇
  2012年   22987篇
  2011年   26550篇
  2010年   19638篇
  2009年   20898篇
  2008年   17809篇
  2007年   22463篇
  2006年   21178篇
  2005年   17593篇
  2004年   14565篇
  2003年   12870篇
  2002年   10355篇
  2001年   7988篇
  2000年   6578篇
  1999年   5300篇
  1998年   4145篇
  1997年   3432篇
  1996年   3220篇
  1995年   2608篇
  1994年   2297篇
  1993年   1638篇
  1992年   1519篇
  1991年   1188篇
  1990年   1080篇
  1989年   925篇
  1988年   505篇
  1987年   347篇
  1986年   346篇
  1985年   290篇
  1984年   286篇
  1983年   186篇
  1982年   217篇
  1981年   116篇
  1980年   157篇
  1979年   79篇
  1978年   39篇
  1977年   39篇
  1962年   65篇
  1959年   45篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
《Ceramics International》2021,47(19):27351-27360
A series of xPbO–(45-x)CuO–55B2O3 glasses (5 ≤ x ≥ 40 mol %) were prepared by the melt-quenching technique. The X-ray diffraction (XRD) patterns of the prepared glasses are found to have amorphous structure. An extensive ultrasonic study has been made to explore the structural role of PbO and CuO in the borate network. Various elastic properties were calculated from the measured data of density and ultrasonic velocity. Ultrasonic velocity and elastic moduli revealed broad humps at about 20 mol % PbO, which are attributed to the borate anomaly. Below 20 mol % PbO, all Pb2+ ions are considered to be entering the borate network as a glass modifier. This results in the transforms the borate network from an open structure to a denser three-dimensional structure due to BO3 → BO4 conversion. Beyond 20 mol, addition of PbO results in the formation of metaborate, pyroborate, and orthoborate units with NBOs. This weakness the glass structure and decrease both ultrasonic velocity and elastic moduli. The elastic properties were predicted and quantitatively analyzed by taking into account the effect of boron coordination number on the compositional and structural parameters involved in Makishima–Mackenzie's theory, ring deformation model and bond compression model. An excellent agreement between the computed theoretical and experimental elastic moduli, micro-harness and Poisson's ratio was achieved for majority of samples.  相似文献   
42.
《Ceramics International》2021,47(21):30358-30366
Stereolithography-based 3D printing is a promising method to produce complex shapes from piezoceramic materials. In this study, LCD-SLA 3D printing was used to create lead-free piezoceramics based on barium titanate (BaTiO3, BT). Three types of BT powders (micron, submicron and nanoscale) were tested in LCD-SLA 3D printing, and a technique for the preparation of a ceramic slurry suitable for LCD-SLA printing has been developed. Using TGA-DSC analysis, the thermal debinding parameters to obtain crack-free samples were determined, followed by further sintering and the study of the piezoelectric properties (εr = 1965, d33 = 200 pC/N, tan = 1,7 %). The results of the study demonstrate high potential for the production of complex piezoceramic elements that can be used in aviation, in particular, aviation radio equipment; in the marine industry for transceiver modules of hydroacoustic antennas; and in the nuclear industry for pressure control sensors in the steam–water path.  相似文献   
43.
The introduction of multiple heterogeneous interfaces in a ceramic is an efficient way to increase its thermal resistance. Novel porous SiC–SiO2–Al2O3–TiO2 (SSAT) ceramics were fabricated to achieve multiple heterogeneous interfaces by sintering equal volumes of SiC, SiO2, Al2O3, and TiO2 compacted powders with polysiloxane as a bonding phase and carbon as a template at 600 °C in air. The porosity could be controlled between 66% and 74% by adjusting the amounts of polysiloxane and the carbon template. The lowest thermal conductivity (0.059 W/(m·K) at 74% porosity) obtained in this study is an order of magnitude lower than those (0.2–1.3 W/(m·K)) of porous monolithic SiC, SiO2, Al2O3, and TiO2 ceramics at an equivalent porosity. The typical specific compressive strength value of the porous SSAT ceramics at 74% porosity was 3.2 MPa cm3/g.  相似文献   
44.
《Ceramics International》2021,47(24):34860-34868
Graphene oxide (GO) received a significant attention in the scientific community due to their excellent mechanical properties identifying themselves as an alternative and combinatory to various other metals and composites. Though GO possess excellent strength, it was observed from the literature that graphene oxide consisting of hydroxyl group elements ensue in poor bonding. Thus reduced functional group density (rFGD) graphene is preferred which has an advantage of good bonding, alongside very small quantity as a filler is required to achieve the enhancement equivalent to graphene oxide which forms the novelty of the current work. In current case, 3, 6 and 9 wt% of rFGD is dispersed into E-glass fibre reinforced composite by traditional hand layup technique. The obtained results revealed that, the tensile, flexural and impact strength have shown superior enhancement with 3 and 6 wt% of rGO than neat E-glass epoxy (0 wt% rGO), whereas an asymptotic decrement is noticed at 9 wt% when tested with ASTM standards except for impact strength. The microstructural studies also indicated the proper adhesion and alignment of fibres without any agglomerations corroborate the enhancement of properties. These overall finding supports the suitability of the developed laminates for potential use in structural applications in aerospace industry.  相似文献   
45.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   
46.
Repetitive heating and cooling cycles inevitably cause crack damage of hot gas components of gas turbine engines, such as blades and vanes. In this study the self-healing capacity is investigated of mullite + ytterbium monosilicate (Yb2SiO5) as EBC material with Ti2AlC MAX phase particles embedded as a crack-healing agent. The effect of Ti2AlC in the EBC was compared with the self-healing ability of the mullite + Yb2SiO5 material. After introducing cracks by Vickers indentation on the surface of each sample, crack healing was realized by controlling the temperature and time during the post-heat-treatment process. For the mullite + Yb2SiO5 composite with Ti2AlC particles, crack healing occurred at 1000 °C, while in the case of the mullite + Yb2SiO5 composite without Ti2AlC, a sustained temperature of 1300 °C or higher was required. Compared with the healing of the mullite + Yb2SiO5 composite by the formation of a eutectic phase, the addition of Ti2AlC promoted healing via the oxidation of Ti and Al. Notably, the surface formation of a ternary oxide of Ti–Yb–O was confirmed, which completely covered the damage area. Consequently, the addition of a Ti2AlC MAX phase to the EBC composite resulted in a complete strength recovery, while the mullite + Yb2SiO5 composite without Ti2AlC showed a strength recovery of about 80%. Furthermore, by analyzing the indentation load–displacement curve to indicate the role of Ti2AlC, the addition of Ti2AlC improved both the hardness and stiffness of the composite.  相似文献   
47.
The morphology and microstructure of splats impact the comprehensive capability of a new coating methodology called chelate flame spraying (CFS). This study addresses the quantitative characterization of the spread morphologies of flame sprayed Er2O3 splats directly deposited under different spray conditions on aluminum alloy substrates with a mirror finish. The influence of the in-flight particle temperature and velocity, carrier gas type, and carrier gas ratio on the solidification mechanism of molten droplets was investigated. Image analysis methods were employed to identify single splats from the morphology observed with field-emission scanning electron microscopy (FE-SEM). In addition, Er2O3 films were synthesized on an Al–Mg alloy (A5052) substrate using N2 or O2 as the carrier gas. When O2 was used as the carrier gas, 109-μm-thick films were deposited on the A5052 substrate. The cross-sectional porosity of the films was 3.8%. In contrast, films with 101-μm thickness were synthesized on the A5052 substrate when N2 was used as the carrier gas. The cross-sectional porosity of these films was 13.8%. The results showed that the carrier gas type (N2) and carrier gas ratio had a significant effect on the flattening behavior of the molten droplets. A spraying method combined with multidimensional modes is proposed to control the morphology of the splats.  相似文献   
48.
In the current study two different batches of X7R-0603 BME-MLCCs displayed dissimilar electrical performance, despite having the same chemical composition, tape casting, and sintering conditions; with the only difference between them being the ore deposits where the raw materials were extracted from to synthesize the BaTiO3. Specifically, they presented different electrical response to highly accelerated life tests (HALT). Although the chemical analysis of each slip showed the same composition, the trace elements of the BaTiO3 sources could have acted as dopants or produced different secondary phases. A search for precipitates in the two samples was conducted by means of Scanning (SEM) and Transmission Electron Microscopy (TEM) techniques. SEM observations confirmed the presence of precipitates formed within the structure of the MLCCs exhibiting the greatest decrement in their electrical resistance results during the HALT. In order to further characterize the observed precipitates, samples were prepared by Focused Ion Beam (FIB) lift-out method, to make TEM characterization of specific precipitates feasible. TEM studies were performed on the precipitates to obtain electron diffraction patterns and complementary Energy Dispersive X-Ray Spectroscopy (EDXS) chemical analysis. Based on the crystal and chemical data obtained, it can be concluded that the precipitates are a hexagonal anhydrous silicate oxyapatite phase with a stoichiometry of Ca3Y16Si10O13, and lattice parameters of a = 0.9353 nm and c = 0.6970 nm; this phase was not found in the JCPDS data base. Differences in raw materials coming from different ore deposits can produce undesired precipitates that affect the electrical performance of MLCCs.  相似文献   
49.
Aqueous solutions of poly(vinylpyrrolidone) (PVP) of various concentrations (20, 25, and 28 wt%) were successfully spun into fibers by centrifugal spinning. The pristine PVP fibers were annealed and carbonized to produce flexible carbon fibers for use as binder-free anodes in lithium-ion batteries. These flexible carbon fibers were prepared by developing a novel three-step heat treatment to reduce the residual stresses in the pristine PVP precursor fibers, and to prevent fiber degradation during carbonization. The thermogravimetric analysis data showed that the annealed fibers yielded a residual mass percentage of 36.0% while the pristine PVP fibers suffered a higher mass loss and only retained 26.5% of original mass above 450 °C (under nitrogen). The electrochemical performance of the carbon-fiber anodes was evaluated by conducting galvanostatic charge/discharge, rate performance, and cycle voltammetry experiments. The 20, 25, and 28 wt% derived binder-free anodes delivered specific charge capacities of 205, 189, and 275 mAh g−1, respectively, after the first cycle at a current density of 100 mA g−1. The results obtained in this work indicate that a feasible pathway towards a large-scale production of carbon-fiber anodes from a 100% aqueous solution can be achieved via centrifugal spinning and subsequent heat treatment.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号